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Abstract 

This paper provides the design of robust power system stabilizers using reduced order models whose state 

variables are torque angles and speeds. The methods are based on a modified optimal controller that place 

the system poles in an acceptable region in the complex plane for a given set of operating and system 

conditions. The output feedback gain matrix is obtained by using the strip eigenvalue assignment which it 

does not need the specification of weighting matrices. The effectiveness of the proposed controller is 

illustrated by a numeric example involving a three-machine nine-bus power system. The results show the 

robustness of the proposed controller and its ability to enhance system damping over several operating 

conditions. 
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I.  Introduction 

Power system stabilizers (PSSs) are now commonly used by utilities in modern power systems. The 

control signals of the PSSs are added to the excitation systems to enhance damping of the electric power 

system during low-frequency oscillations [1-5]. 

Design of conventional stabilizer is generally based on linearized fixed parameter model. This 

stabilizer has performed reasonable well to improve the dynamic stability of a power system. Power 

systems are generally non-linear and highly dynamic system. Thus, the fixed parameter conventional power 

system stabilizers (such as lead-lag controllers, fixed gain PI controllers, and PID controllers) designed 

based on linear control theory and linearized model around an operating point can not provide the desired 

performance over the whole range of operating conditions [6, 7]. Another approach to PSS design based on 

pole placement techniques has been proposed [8, 9]. 

Recently, modern control methods have been proposed for the PSSs and decentralized controllers 

have been designed on based of the optimal control theory [3, 10-14]. These methods utilize a state space 

representation of the power system model and calculate a gain matrix which, when applied as a 

multivariable feedback control will minimize a prescribed objective function. A method based on 

structurally constrained optimal control for the determination of stabilizer setting in multimachine power 

systems has been proposed [10]. Another approach used a new procedure for designing power system 

stabilizer under the constraint of sequential stability has been reported. Where this procedure adopted a 

linearized model of the power system in the state space representation. The stabilizing signal required the 

linear feedback of the local variables only [11]. Different approaches have been proposed to deal with PSSs 

design, one of which is based on reduced order models [12-14]. 

For practical implementation, not all of the state variables are available for measurement. In this case 

the optimal control low requires the design of a state observers. This increases the implementation cost and 

reduces the reliability of control systems. For these reasons a control scheme is favored the uses only a few 

desired state variables such as torque angles and speeds. The method referred to as optimal reduced order 

models is obtained to retain the physical meanings of the desired state variables [14]. Although the closed-

loop system constructed by using the optimal control theory has some advantages, there are still many 

problems to solve. One of the most serious is that it is rather difficult to specify the control performance 

described in terms of a quadratic performance index. The weighting matrices usually would be decided 

based on trial and error to give satisfactory performance. It is difficult to determine the weighting matrices 

of the performance index. 

This paper presents a new approach to design of robust power system stabilizers using reduced order 

models whose state variables are torque angles and speeds. The design method does not need the 

specification of weighting matrices. In this work, the desired positions of the eigenvalues are achieved 

without convergence problem. The effectiveness of the proposed controller is illustrated by a numeric 
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example involving a three-machine nine-bus power system. The results show the robustness of the 

proposed controller and its ability to enhance system damping over several operating conditions. 

 

II.  System representation 

The system under study consists of three-machine nine-bus power system as shown in Fig. 1. Each 

machine has been represented by a 3rd-order generators equipped with a static exciter [1, 16]. The PSS 

supplementary stabilizing signal u is added to the excitation system of each machine as illustrated in Fig.2. 

To start with, we linearise the system model around the operating point, which results in the following 

form: 

 BuAxx                          (1) 

 Cxy                 (2) 

where x is the nx1 state vector, u is the mx1 vector of control variables and y is the rx1 vector of system 

output variables. 
 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Three-machine nine-bus system 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 IEEE Type-ST1 excitation system 
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For the ith machine, 
i  is the deviation in the rotor speed, 

i  is the deviation in rotor angle, 

'

qiE  is the deviation in the voltage proportional to the direct-axis flux linkage, and fdiE  is the 

deviation in the output of the excitation system. The control vector is partitioned as 
TTTT

uuuu ],,,[ N21   

where u is the reference for the voltage regulator of the ith machine. The system output vector is partitioned 

as 
TTTT

yyyy ],,,[ N21   

where 
T

iiiy ],[    

With the above partitions of vector x and u, matrix B will exhibit a block diagonal structure 

},,{ diagblock N1 BBB   

where 
T

aiaii /TKB ]   0  0  [0  

A, B, and C are the real constant matrices. Assuming zero interactions between subsystems, equations (1) 

and (2) can be written as: 

iiiii uBxAx                               (3) 

iii xCy                           (4) 

 

III.  Robust power system stabilizers design 

In this section, a power system stabilizer is designed using reduced order models. The method is based 

on a modified optimal control that place the system poles in vertical strip in the complex plane. Without 

loss of generality, it is assumed that, in an n-machine power system, a PSS is to be installed on each 

machine. 

We assume that the system expressed by (3) and (4) be controllable and observable. By using reduced 

order model, the system can be reduced to the following form [14]: 

iiiii uGzFz                       (5) 

where 
mxl

i Rz  :  State vector to be retained consisting of torque angles and speeds. 

ii GF ,   :  Constant matrices of reduced order model with appropriate dimensions. 

Let (Ai,Bi) be the pair of the open-loop system matrices in (3) and h ≧ 0 represent the prescribed 

degree of relative stability. Then the closed-loop matrix 
i

T

iiiici PBRBAA
1  has all its eigenvalues 

lying on the left side of the -h vertical line as shown in Fig. 3a, where the matrix iP  is the solution of the 

following Riccati equation: 

n

1 0)()(  

ii

T

iiiniii

T

ni QPBRBPhIAPPhIA                                                                             (6) 

              

Note that in (6) with Q = 0n, the unstable eigenvalues of )( ni hIA   are shifted to their mirror image 

positions with respect to the -h vertical line, which are the eigenvalues of the closed-loop system matrix 

ciA . 

For the reduced order models, we assume that h1 and h2 are two positive real values to determine an open 

vertical strip of [-h2, -h1] on the negative real axis as shown in Fig. 3b and give an mxm matrix 

mii IhFF 1  

The control law changed to be 

iii zKtu )(                           (7) 

with the feedback gain  
i

T

ii PGRK
1 . The matrix iP  is the solution of the following modified Riccati 

equation: 

mi

T

iiiiii

T

i PGRGPFPPF 01               (8) 
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The constant gain 
i  is selected by 

)(2

1 12

ii

i
KGtr

hh 
                          (9) 

The optimal closed-loop system can be written as follows: 

xCKBAx )(


                             (10) 

where 

GCB
T  

 NGGG ,, diagblock  1   

 ]    [,],    [ diagblock  NN11  
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Equation (10) consists of a set of eigenvalues which lie inside the vertical strip of the [-h2, -h1] as shown in 

Fig. 3b. The implementation details of the proposed controller are shown in Fig. 4. 

 

    

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Complex s-plane 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Proposed controller  

 

IV.  Simulation results 
To evaluate the performance of the proposed controller, tests have been carried out on the three-

machine nine-bus power system as shown in Fig. 1. The system data is given in appendix. 

The variation of loading conditions and open loop eigenvalues of the study system are given in Table 

1 and Table 2, respectively. Table 2 shows, each pair of conjugate eigenvalues corresponds to an oscillation 

mode, there are six modes in this study system. Mode 1, 2, and 3 are the electromechanical modes. Mode 4, 

5, and 6 are oscillation modes determined by excitation system of the machine. It can be seen that the 

damping of the electromechanical modes for all the operating condition are poor (damping ratio:ζ< 10%). 

Only the electromechanical modes are to be shifted. In this work, we choose h1 = 2 and h2 = 3 for all 
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operation conditions. Consequently, the electromechanical modes with absolute real part less then h1 = 2, 

will be shifted to the vertical strip of [-h2, -h1] = [-3, -2]. The closed loop eigenvalues of the study system 

for three operating conditions are given in Table 3. It can be seen that the electromechanical modes have 

been shifted into the acceptable region. The system response of the angular frequency to a 5% step 

disturbance input at the AVR voltage reference of machine 1 for all operating conditions are shown in Fig. 

5, 6, and 7, respectively. For comparison purposes, the open loop responses (without controller) are also 

included. The system oscillations of the rotor speed deviation for all the 3 machines are seen to very well 

damped with the controller. 

 

Table 1 

Loading condition (in p.u) 

 

Heavy     Nominal       Light 

 
Generator 

P     Q       P      Q       P      Q 

 

G1      1.330  0.630    0.716   0.270    0.465  -0.092 

G2      1.900  0.361    1.630   0.066    1.100  -0.225 
G3      1.200  0.120    0.850  - 0.109    0.300  -0.319 

 

Load 
 

A       1.750   0.700   1.250   0.500    0.750   0.300 
B       1.200   0.400   0.900   0.300    0.500   0.150 

C       1.400   0.500   1.000   0.350    0.600   0.200 

 

 

 

     Table 2  

   Open loop eigenvalues of the study system 

 

   Modes     Heavy       Nominal       Light 

 
1     -0.0306±j10.772  - 0.0321±j12.3592   - 0.0167±j13.9497 

2     -0.0064±j 6.4621  - 0.0118±j 7.0773   - 0.0058±j 7.7369 

3     -0.0174±j 2.7842  - 0.0114±j 3.1716   - 0.0040±j 3.6173 
4     -5.0406±j 1.0785  - 5.0464±j 0.9527   - 5.0549±j 0.7693 

5     -5.3522±j 5.5831  - 5.3517±j 5.5244   - 5.3618±j 5.4070 

6     -5.2085±j 4.2952  - 5.1883±j 4.1740   - 5.1861±j 3.9965 

 

 

 

Table 3 

Closed loop eigenvalues of the study system 

 

        Modes  Heavy        Nominal        Light 

 
1  -2.5185±j10.961  -2.5047±j12.5259  - 2.4938±j14.0930 
2  -2.4926±j 6.7505  -2.4915±j 7.3475   - 2.4864±j 7.9825 

3  -2.4966±j 3.4215  -2.4937±j 3.7415   - 2.4945±j 4.1173 

4  -5.0233±j 1.0150   -5.0354±j 0.9027  - 5.0500±j 0.7411 
5  -5.3531±j 5.5621  -5.3604±j 5.5015   - 5.3746±j 5.3900 

6  -5.2083±j 4.2945  -5.1869±j 4.1667   - 5.1873±j 3.9913 
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Fig. 5 System response with nominal loading condition 

--- : without controller; ___ : with controller 
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Fig. 6 System response with heavy loading condition 

--- : without controller; ___ : with controller 
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Fig. 7 System response with light loading condition 

--- : without controller; ___ : with controller 
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V.  Conclusion 

In this paper, robust power system stabilizer design using reduced order model has been presented. 

The proposed technique is seen to provide the desired closed loop performance over the specified range of 

operating condition. The output feedback control gain is obtained by using the strip eigenvalue assignment 

which it does not need the specification of weighting matrices. The design procedure is simple and bears 

much potential for practical implementations. It is demonstrated by simulation results that the proposed 

controller can significantly increase the damping of power system oscillations over several operating 

conditions. 
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