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Abstract. It is possible to preserve power quality by classifying and identifying abnormalities. 

Prior studies focused on enhancing the PQD classification performance in one-dimensional 

(1D) CNNs. Recently, various image conversion methods have been established to facilitate 

CNN for PQD classification. PQD is a 1D signal that needs to be converted to a 2D image 

through data pre-processing since 2D images may include more PQD information than 1D 

signals. However, the PQD data used for the power quality classifier is synthetic PQD produced 

using mathematical models with parameter modifications in accordance with IEEE Std. 1159, 

which places limitations on prior research. This study uses data from the Amrita Honeywell 

Hackathon 2021 to examine how the response-based 2D deep CNN power quality classifier 

responds to actual field power quality disruptions. The results of the study show that a 2D deep 

CNN with regulated 2D grayscale pictures based on a process-regulated 2D image matrix can 

classify real data power quality disturbances with accuracy, precision, recall, and F1-score of 

98.80%, 98.99%, and 98.60%, respectively. Additionally, 2D images can potentially contain 

more PQD data than 1D signals, enhancing identification performance on actual data. 

1.  Introduction 

Power quality is becoming a more important consideration, especially with the global adoption of the 

smart grid idea to define future electrical firms. Electric power utilities and customers are anticipated to 

obtain optimum voltage and current waveforms at rated power frequency. However, distributed energy 

generating is one of the main causes of power quality disturbances (PQDs). Therefore, such disruptions 

must be identified before the proper mitigation mechanisms can be established to enhance power quality 

in a practical distribution network. 

As of now, categorization and disturbance detection have been found to be crucial steps in preserving 

power quality. In the context of the smart grid, it is feasible to develop a power quality system based on 

the Internet of things [1] and deploy it along with the distribution network with the aim of informing 

utilities about consumption and disruptions via a two-way communication infrastructure. A general 

architecture can be seen in Figure 1. 

Deep learning-based intelligent algorithms have recently been employed to categorize PQD. 

Convolutional neural networks (CNN) are among the most efficient techniques and are frequently 

employed in PQD classification research [2]. In earlier studies, the focus was on enhancing PQD 
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classification performance in one-dimensional (1D) CNNs. Different image conversion techniques have 

been developed in recent years to facilitate the usage of CNN for PQD classification, which is a 1D 

signal that needs data pre-processing to convert to a 2D image as 2D images can include more PQD 

information than 1D signals. While [3] uses the signal-waveform image to train the PQD classifier 

immediately, and [4] transforms the sag signal into the PQD image using the space phasor diagram. 

However, the PQD data used for the power quality classifier is synthetic PQD produced using 

mathematical models with parameter alterations in accordance with IEEE Std. 1159, therefore, previous 

research has limitations. In order to depict a system based on historical data, models are abstractions of 

reality. Existent systems are intricate and made up of numerous interconnected parts. As a result, the 

quality of the model declines if the existent system experiences considerable changes. 

 

 

Figure 1. IoT-PMS in smart grid system 

This pilot research examines how the response-based 2D deep CNN power quality classifier responds 

to actual field power quality disruptions using data from the Amrita Honeywell Hackathon 2021. The 

findings can be utilized to prove the hypothesis that a system for detecting power quality issues based 

on 2D deep CNN can improve the performance of identification accuracy on actual data. 

2.  Research Methodology 

2.1.  Data and Appliances  

The data utilized in this study is published for the Amrita Honeywell Hackathon 2021’s power quality 

analysis and comparison purposes. The dataset employed in this study is made up of signals classified 

into the following five power quality categories: normal, third harmonic wave, fifth harmonic wave, 

voltage dip, and transient. Each signal is described by 128 sampling data points (Ns), two sampling 

cycles (Nc), and a nominal value of fundamental frequency (f) in the range of 59.5 and 60.5 Hz. The 

following describes the power quality condition concerning the output class value with a total of 12,000 

raw data: Normal (1,998), 3rd harmonic wave (2,000), 5th harmonic wave (3,000), voltage dip (2,000) 

and transient (3,000). 

The hardware utilized is a MacBook Air with the following specifications: 8 GB of RAM, an M1 

chip with a 16-core Neural Engine, a 7-core GPU, and an 8-core CPU with four performance cores and 

four efficiency cores. The learning model executed on a Google Colab accelerated GPU and internet 

connection using Wi-Fi 802.11ax Wi-Fi 6.  

2.2.  Data Preparation 

Before being used in model training, preprocessing data is a crucial stage in its preparation and 

transformation, when the range of the data samples varies, normalization is a popular data processing 

technique where numerical column values are altered to have a uniform scale [5]. It is essential to scale 

the data into a value range of -1 to 1 in normalization process before using it to reconstruct the dataset 

into two dimensions since the power quality distribution one-dimensional dataset value has a broad 
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range, specifically between -7,185 and 11,997. Before being trained in the deep learning model in this 

research, raw power quality distribution data were processed at the data pre-processing phase, which 

comprise of two phases: signal synchronization (SS) and image regulation (IR), as shown in Figure 2.  

 

Figure 2. The stage of data preparation 

In the SS stage, the regulated cycle duration is determined using the fundamental frequency received 

from the IEC (Std. 61000-4-7) based synchronizer in line with the fundamental frequency variation. The 

2D grayscale picture matrix would then be controlled in the IR stage once the PQD signal had been 

correctly divided using the acquired fundamental frequency. The following are the essential phases in 

data preprocessing: Identify the submatrix dimension first. The square submatrix (number of the rows 

(𝑁𝑟𝑜𝑤) is exactly as many columns (𝑁𝑐𝑜𝑙) selected. Second, split the PQD signal into a number of 

cycles. The Nc cycles of the PQD signal are determined by the f value. Thirdly, create submatrices from 

the divided cycles. To create a controlled matrix, combine the submatrices in step four. Finally, create 

a 2D grayscale image from the controlled matrix. The grayscale image is produced by converting the 

matrix's components to the grayscale color range (0–255). The resulted image resolution is Nrow x Ncol 

pixels [6]. Table 1 shows the results of a regulated 2D grayscale image created using the previously 

discussed method.  

Table 1. Power quality disturbances signal form and 2D grayscale image 

 Normal 3rd Harmonic 5th Harmonic Voltage Dip Transient 

PQD 1-D 

Signal 
     

PQD 2-D 

Image 
     

 

The disturbance classification stage would next process the regulated feature image to carry out the PQD 

identification. 

2.3.  Method 

The research method in this study separated into 5 stages as shown in Figure 3. First, compile a CSV 

file with the power quality signal dataset from 5 classes. Second, the signal dataset is initially normalized 

during the data preprocessing stage. Third, create an image format with a metric size of 64 x 64 using 

the normalized dataset. In the fourth step, a ratio of 80% of the dataset utilized for model learning was 

used for model training data, while 20% was used for model validation. In many disciplines, using 

machine learning or deep learning models to solve issues typically involves dividing information into 

ratios [5]. Furthermore, each category received 200 testing data, for 1,000 testing data spread throughout 

5 classes. 
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Figure 3. Stages of research method 

 

In the fifth stage, the training model is evaluated to determine the performance of the 2D deep CNN 

model in recognizing PQDs. The model structure of 2D deep CNN applied is composed of 4 

convolutional layers, 2 maxpooling layers and 1 dropout layer before 2 fully connected layers are shown 

in Figure 4. Therefore, the accuracy, recall, precision, and f1-score are used to evaluate the model’s 

performance results. [7].  

 

 

Figure 4. CNN model architecture 

3.  Result 

Figure 5 shows the graphs among both the model of training and validation. According to the graph, 

training and validation accuracy are, respectively, 97.34% and 96.75%. To perform the fitting accuracy, 

the dropout layer value was adjusted to 0.35. The model demonstrates that when it is applied, there is 

neither (very slightly) over-fitting nor under-fitting of the model.  

 

Figure 5. (a) Fitting graph of training and 

validation accuracy 

 

 

Figure 5. (b) Fitting graph of training and 

validation loss 
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Table 2 presents the performance evaluation for comparing CNN classification performance using real 

data and generated data. 

Table 2. Performance of deep CNN classification method for synthetic and real data of PQD 

Index 1D Signal 

(with SNR 20dB) 

Regulated 2D Image Matrix 

(synyhetic data) [6] 

Regulated 2D Image Matrix 

(real data) 

Accuracy(%) 98.25 99.97 98.99 

Precision(%) 98.28 99.81 98.60 

Recall(%) 98.21 99.80 98.80 

F1-score(%) 98.28 99.80 98.80 

 

A deep CNN classifier can recognize five real data power quality disruption classes, as shown in Table 

2. The results show that the 2D deep CNN method is superior at handling synthetic data, whereas 

processing real data at 98.99 percent results in slightly lower accuracy. Each synthetic disturbance was 

assembled of 10,000 training samples of data, and each category was assigned 1,000 testing samples. 

One of the factors affecting the data's resilience is its limited amount. However, with synthetic data 

contaminated with 20 dB SNR noise, the result beats the 1D CNN classification method's performance. 

The accuracy level provides details about a model's accuracy, or it can be argued that the performance 

of the model improves with increasing accuracy. Parameters of the training process, such as learning 

rate, batch size, and a number of epochs, were changed. By choosing the right parameters, the training 

procedure can be improved. 

4.  Conclusions 

The study’s findings showed that a 2D deep CNN with regulated 2D grayscale images based on a 

process-regulated 2D image matrix has the ability to classify real data power quality disturbances with 

the accuracy of 98.99%, and precision of 98.60%, recall and F1-score each with a value of 98.80%. 

Moreover, 2D images can contain more PQD information than 1D signals, enhancing the accuracy of 

identification performance on actual data. 

Since the data’s robustness significantly impacts the accuracy value of the applied model, research 

with real data is constrained by the small number of data samples obtained for the training process. 

Future work will require a transfer learning mechanism and a way to integrate several superior models 

to outperform the existing model. 
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