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Abstract: Although combining a high-resolution camera with a wireless sensing network is effective
for interpreting different signals for image presentation on the identification of face recognition, its
accuracy is still severely restricted. Removing the unfavorable impact of ambient light remains one
of the most difficult challenges in facial recognition. Therefore, it is important to find an algorithm
that can capture the major features of the object when there are ambient light changes. In this study,
face recognition is used as an example of image recognition to analyze the differences between
Local Binary Patterns Histograms (LBPH) and OpenFace deep learning neural network algorithms
and compare the accuracy and error rates of face recognition in different environmental lighting.
According to the prediction results of 13 images based on grouping statistics, the accuracy rate of
face recognition of LBPH is higher than that of OpenFace in scenes with changes in ambient lighting.
When the azimuth angle of the light source is more than +/−25◦ and the elevation angle is +000◦, the
accuracy rate of face recognition is low. When the azimuth angle is between +25◦ and −25◦ and the
elevation angle is +000◦, the accuracy rate of face recognition is higher. Through the experimental
design, the results show that, concerning the uncertainty of illumination angles of lighting source,
the LBPH algorithm has a higher accuracy in face recognition.

Keywords: ambient light; face recognition; LBPH; OpenFace; sensing network

1. Introduction

Face recognition has become a major interest in Automatic Optical Inspection (AOI)
image processing and computer vision because of its non-invasiveness and easy access.
Generally, AOI will classify the flaws into different types, trace the cause of the defects
generated by the production machine, and adjust the machine’s parameters to reduce the
incidence of defects [1]. Extracting face features with good discrimination and robust-
ness and constructing efficient and reliable classifiers has always been the focus of face
recognition research [2]. In recent years, face recognition applications have sprung up
abundantly in Taiwan and all around the world. These include examples such as M-Police
face recognition in the police department, smartphone Face ID face unlocking [3], entry
and exit systems of unmanned shops, library book checkout systems, airport entry and exit
systems, etc. [4,5].

Most commercially available automatic systems currently use fixed closed-circuit
television (CCTV) cameras [6], which enable the deployment of efficient identification and
tracking algorithms, as shown in Figure 1. Following the acquisition of meaningful data by
a CCTV camera, it is critical to ensure that the control room receives the same authentic
data in order to take any action or send an alarm signal to various departments. Since there
are several cameras, the system would generate a substantial number of redundant and
unvaluable image data, which causes problems in looking for informative and valuable data
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from the stack of acquired data, as well as continual bandwidth loss [7]. The significance
of the viewpoint also needs to be considered for the CCTV system. The quality of the
generated image is largely determined by the angle of light, defining the viability of the
visual task, and simplifying its performance. In short, visibility is essential for the sensor to
recognize a feature [8].
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With the elimination of a total of tens of thousands of meters of power lines, the
promise of wireless sensing networks has recently contributed to the development of image
object identification and tracking [9]. The image network structure demonstrates the poten-
tial for object identification in the monitoring sector [10,11]. As a result of highly developed
technology, real-time image sensing platforms such as wireless visual sensor networks
are created by integrating high-resolution cameras with wireless sensing networks. These
platforms enable us to interpret various signals for image display [12].

Although face recognition technology has made great breakthroughs in recent years,
it is still affected by different environmental lighting, resulting in a significant decline in
accuracy and system failure. Thus, overcoming the adverse effect of ambient light is still
one of the core problems of face recognition [13]. Popular methods of facial identification
include traditional machine learning, e.g., Eigenface [14], Fisherfaces [15], and local binary
patterns histogram algorithm (LBPH) [16]. Another important model in facial identification
is the neural network model, in which deep neural network (DNN) [17] and convolutional
neural network (CNN) [18] are widely adopted. In this study, we provide a method
for investigating image visibility scenarios with varying degrees of ambient lighting by
considering previous research on face recognition.

There are several reports or literature that investigate the effect of face recognition
algorithms under different lighting conditions [19], but the detailed description of how
different lighting angles affect the accuracy of programs is not mentioned. The LBPH
algorithm has good robustness for extracting important features of objects even with
changes in environmental lighting, e.g., J. Howse [20] used Haar cascade classifiers and
methods such as LBPH, Fisherfaces, or Eigenfaces for object recognition, applied the
detectors and classifiers on face recognition, and suggested the possibility of transfer to
other fields of recognition. V. B. T. Shoba et al. [21] proposed LBPH plus CNN’s face
recognition method, which not only reduced the computational cost but also improved the
face recognition accuracy to 98.6% in the Yale data set.

I. Mondal et al. [22] proposed a CNN electronic voting system for election to ensure
each voter only cast one. Through the algorithm, a voter’s face was recognized and verified.
L. Zhuang et al. [23] proposed a new method based on deep learning to solve the adverse
effects of environmental light changes in the process of face recognition. The most common
algorithms for facial detection include the Haar Cascade [24] and the histogram of oriented
gradients (HOG) classification methods [25]. By using Haar feature extractors with a multi-
stage weak classification process (cascading), one can build a high-accuracy face classifier.
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The HOG algorithm divides an image into small cells and calculates a histogram of gradient
directions. With the fusion of grouped cells, the most frequent gradient direction in a block
is kept. The resulting HOG descriptors are used to train a classifier, such as a support
vector machine (SVM), to detect faces.

OpenFace is a DNN model for face recognition based on Google’s FaceNet paper [26]
that rivals the performance and accuracy of proprietary models. Another benefit of Open-
Face is that since the development of the model is mainly focused on real-time face recog-
nition on mobile devices, the model can be trained with high accuracy using very little
data [27]. Because of these advantages, OpenFace has been used in facial behavior analysis
toolkit and gets outstanding results [28].

In this study, we trained and tested the LBPH and OpenFace face recognition models
on Google’s Colaboratory and compared the accuracy between the two face recognition
algorithms with changes in the degree of environmental lighting. Our findings are ap-
plicable to automated vision systems, which employ advanced algorithms to detect and
track numerous pictures from multiple cameras. The analytical results can be utilized to
recognize an object in a variety of lighting conditions.

2. Research Materials
2.1. Data Set

The Extended Yale Face Database B data set [29] is a gray-scale face image data set.
Two data sets are provided:

1. Figure 2 is the original image with an azimuth angle of +130◦ to −130◦, the size is
640 × 480 pixels, and there are 28 people in files and 16,128 images in total. Each person
has 9 poses, 64 images of environmental lighting changes, and a total of 576 images. The
9 postures include the following: posture 0 is the front posture; postures 1, 2, 3, 4, and 5 are
about 12◦ from the camera’s optical axis (distance from posture 0); and postures 6, 7, and 8
are about 24◦ [30].
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Figure 2. Original image with azimuth angle of +130◦ to −130◦.

2. Figure 3 shows face images with an azimuth angle of +130◦ to −130◦, all manually
aligned, cropped, and adjusted to 168 × 192 pixels. There are 38 people in total and a
total of 2432 images. There is only 1 posture for each person, 64 images of environmental
lighting changes, and a total of 64 personal images. In this study, we used these face images
for face recognition [31].
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Figure 3. Face image with an azimuth angle of +130◦ to −130◦.

The 64 kinds of ambient lighting are composed of different azimuth and elevation
angles. The azimuth angles range from +130◦ to −130◦. The elevation angles range from
+090◦ to −040◦. A positive azimuth angle indicates that the light source is on the right
side of the object, while a negative azimuth angle indicates that the light source is on the
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left side of the object. A positive elevation angle means above the horizon, and a negative
elevation angle below the horizon.

2.2. Google Colaboratory

Google’s Colaboratory (Colab) provides an interactive environment that allows people
to write and execute Python programs and Linux commands on a browser and use TPU
and GPU at no cost. Therefore, Colab is suitable for training the small neural network
model. In addition, Colab is not a static web page but a "Colab notebook”. One can edit
the code, add comments, pictures, HTML, LaTeX, and other formats, execute the code in
sections, and save the current output results on Colab.

2.3. Python Libraries

The face recognition algorithms and packages used in this study are all written in the
Python 3 programming language. The main libraries used are shown in Table 1.

Table 1. List of python libraries.

Library purpose

opencv image processing, LBPH face recognition
imutils image processing (package opencv part of the API)
keras data enhancement
numpy array and matrix operations
sklearn machine learning
pickle object serialization and deserialization
sqlite3 database operations
matplotlib visualized graphics presentation

The opencv and imutils packages were mainly used for image processing. The opencv
functions included building LBPH face recognition models, reading images and caffe, execut-
ing TensorFlow and other deep learning models, image pre-processing, capturing images
from cameras, and displaying images. The imutils program was used in conjunction with
opencv to calculate the number of image frames, resize the image, and maintain the image’s
aspect ratio. The keras library was used for data enhancement. It randomly performed oper-
ations such as horizontal translation, vertical translation, zooming, and horizontal flipping
on the image to generate many similar images, increasing the number of images for training.
The numpy library was used for one-dimensional array and matrix operations (images). The
sklearn library was used to split the training set and test set, do label coding, execute model
performance evaluation, and implement OpenFace’s classifier—SVM. The pickle library was
used to save the state of the object as a binary file for use in the next import program, in
training, and in test data, and to train an SVM classifier and label encoder (LabelEncoder).
The sqlite3 library was used to store image paths, prediction results, and statistical results of
training and testing. The matplotlib library was used to visualize the statistical results.

2.4. Data Transfer

Wi-Fi networks are currently the most popular type of signal exchange for local area
networks and internet access [32]. The fully advanced wireless technology offers the
possibility to take advantage of Wi-Fi-based sensor networks as wireless transmitting has
its greatest influence on outdoor areas [33]. Additionally, 100 transmitters and receivers
can be supported by each Wi-Fi communication unit [34]. In the context of Wi-Fi-based
WSNs’ behavior, an heuristic strategy known as ADVISES (AutomateD Verification of wSn
with Event calculuS) provides a mechanism to understand when sequences of events occur,
to drive design decisions, to add or drop nodes, and to investigate the expected minimum
channel quality required for a WSN to work [35].

Sending high-resolution multi-spectral pictures between a camera and an application
can be particularly difficult, especially if transfer durations must be reduced or equal to
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image frame timings to avoid congestion in image data transmission [36]. Figure 4 describes
a method of delivering pictures to clients over various transceiver connections that matches
diverse transceiver technologies such as Ethernet, ESATA/SAS, and PCI Express. Standard
data are transmitted over the transceiver lines from the source, without any modifications
in format or image processing.
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Figure 4. The process of image recognition from multiple cameras into PC.

After receiving and transferring the image to a personal computer (PC) in the control
room, the suggested approaches, LBPH and OpenFace, were utilized to validate the im-
ages. In the next step, the image data set was evaluated, and the algorithms successfully
recognized the image’s features before transmitting it to automatic detection applications.

To guarantee the most precise image data transfer from the sensing field into crucial
applications, the WSN’s Quality of Service (QoS) must be maintained for as long as possible
by paying attention to coverage, topology, scheduling mechanism, deployment strategy,
security, density, packet transfer distance, memory, data aggregation, battery, etc. [37], all
of which are summarized in Table 2. This strategy has a substantial long-term impact on
network effectiveness.

Table 2. Comparison of related work by metrics.

Work Metrics Result

Topology management techniques for tolerating
node failures in wireless sensor networks: A
survey [38]

Topology

This research examined network topology management
approaches for tolerating node failures in WSNs,
categorizing them into two major categories based on
reactive and proactive approaches.

A survey on topology control in wireless sensor
networks: Taxonomy, comparative study, and
open issues [39]

Existing topology control strategies were classified into
two categories in this study: network connectivity and
network coverage. Spikes of existing protocols and
techniques were offered for each area, with a focus on
barrier coverage, blanket coverage, sweep coverage,
power control, and power management.

Coverage problem in wireless sensor networks:
A survey [40] Coverage To obtain significant results, the integration of both

coverage and connectivity was required.

Maximum target coverage problem in mobile
wireless sensor network [41]

The Maximum Target Coverage with Limited Mobile
(MTCLM) COLOUR algorithm performed well when the
target density was low.

Deployment strategies for wireless sensor
networks [42] Deployment The deployment affected the efficiency and the

effectiveness of sensor networks.

Service-oriented node scheduling scheme for
wireless sensor networks using Markov random
field model [43]

Scheduling
A new MRF-based multi-service node scheduling
(MMNS) method revealed that the approach efficiently
extended network lifetime.
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Table 2. Cont.

Work Metrics Result

A reinforcement learning-based sleep scheduling
(RLSSC) algorithm for desired area coverage in
solar-powered wireless sensor networks [44]

The results revealed that RLSSC could successfully modify
the working mode of nodes in a group by recognizing the
environment and striking a balance of energy
consumption across nodes to extend the network’s life,
while keeping the intended range.

Energy-aware and density-based clustering and
relaying protocol (EA-DB-CRP) for gathering
data in wireless sensor networks [45]

Density

A proposed energy-aware and density-based clustering
and routing protocol (EA-DB-CRP) had a significant
impact on network lifetime and energy utilization when
compared to other relevant studies.

Security for WSN based on elliptic curve
cryptography [46] Security

The installation of the 160-bit ECC processor on the Xilinx
Spartan 3an FPGA met the security requirements of sensor
network designed to achieve speed in 32-bit numerical
computations.

An Adaptive Enhanced Technique for Locked
Target Detection and Data Transmission over
Internet of Healthcare Things [47]

Color and gray-scale image with varied text sizes,
combined with encryption algorithms (AES and RSA),
gave superior outcomes in a hybrid security paradigm for
data protection diagnostic text.

Secure data aggregation in wireless sensor
networks [48] Data aggregation

The study presented a thorough examination of the notion
of secure data aggregation in wireless sensor networks,
focusing on the relationship between data aggregation
and its security needs.

3. Experiment Methods
3.1. LBPH: Face Recognition Algorithm

LBPH is a method that can extract the texture features of the image through a
local binary pattern (LBP) and conduct statistics through a series of histograms. Fi-
nally, after calculating the face distance using the Euclidean distance, LBPH outputs the
classification result.

3.2. OpenFace: Face Recognition Algorithm

The model used in the research was the OpenFace model nn4.small2.v1, and the
network structure is shown in Figure 5. The accuracy of this model was 0.9292 ± 0.0134 [49],
which was based on the Labeled Faces in the Wild (LFW) data set [50] as a benchmark. The
Area Under Curve (AUC) was close to 1, which shows the high accuracy of the model’s
prediction. The AUC of the nn4.small2.v1 model was 0.973.
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3.3. Data Pre-Processing

First, we downloaded 38 people’s pre-cut face images in The Extended Yale Face
Database B data set from the website and converted the images’ format from PGM to JPEG
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for better image management. Among the downloaded images, 7 people’s images were
partially damaged and removed, and the remaining 31 people’s images were applied in
the research.

Next, we selected 1 of 31 people as the reference and 62 images (including duplicate
images) from 64 images as the reference. We then divided these images into 7 groups
according to the elevation angles (refer to Table 3), created 7 folders with the group name,
and put the images into the corresponding folder. We used the procedure to repeat the
same process with the remaining 30 people exactly as followed for that of the reference
person, as shown in Figure 6. We used data enhancement technology for each image in
each group by randomly panning, zooming, and flipping the images horizontally. Each
image was expanded to 20 images and was stored in a folder with the same name as the
image itself.

Table 3. List of images grouped in one of 7-groups (group-A+120–120E+00).

Group Name Image Name

A+120–120E+00

yaleB01_P00A+000E+00
yaleB01_P00A+010E+00
yaleB01_P00A+025E+00
yaleB01_P00A+050E+00
yaleB01_P00A+070E+00
yaleB01_P00A+095E+00
yaleB01_P00A+120E+00
yaleB01_P00A-010E+00
yaleB01_P00A-025E+00
yaleB01_P00A-050E+00
yaleB01_P00A-070E+00
yaleB01_P00A-095E+00
yaleB01_P00A-120E+00
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Finally, the 62 original images for each person were removed from the 7 group folders.
Refer to Figure 7 for the complete process above.

To briefly explain the rules of naming image names, the image name of yaleB01_P00A+000E+00
in Table 2 is used as an example: yaleB01 represents a person’s name, and the three capital
English letters P, A, and E represent Posture, Azimuth, and Elevation, respectively. In this
study, only one posture existed for every person, and thus Posture is recorded as P00.
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3.4. Data Set Split

As shown in Table 4, all the images after data enhancement were divided into two
parts: 80% of the images were the training set, and 20% of the images were the test set.
However, the division was different from the traditional splitting method. Traditionally,
80% of everyone’s images are added up to form the training set, and 20% of everyone’s
images are added up to form the test set.

Table 4. Number of images in training set and test set after data enhancement.

Item Number of Sheets Number of Images

Training set 31 people × 62 sheets × 20 sheets × 0.8 30,752
Test set 31 people × 62 sheets × 20 sheets × 0.2 7688
Total 31 people × 62 sheets × 20 sheets 38,440

In this paper, the new splitting method was to read the 20 images after each data
enhancement in each group of personal images and split each group into a training set and
a test set. Thus, in each enhancement image group, there were 16 training set images and
4 test set images. The number of sheets in the training set and test set for each personal
image was calculated according to Formulas (1) and (2).

Training set: 62 sheets × (20 sheets × 0.8) = 992 sheets (1)

Test set: 62 sheets × (20 sheets × 0.2) = 248 sheets (2)

Multiplying Formulas (1) and (2) by 31 (people) was the number of sheets in the
training set and test set, as shown in Table 3. The reason for splitting immediately was
that the prediction accuracy of each image needed to be counted later. If the traditional
data splitting method were used, the data splitting would have been uneven, and the
subsequent statistics would have lost accuracy.

3.5. LBPH Model Training

First, we divided the image list of the data set (all image paths) into a training set and
a test set and stored them in the Python list. Next, we extracted the person’s name from
the path of each image as a label and saved it in the Python list. Finally, we serialized the
image path and label of each test set into a binary file and saved it to the hard disk.
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We read the images of the training set, converted them to gray-scale images, and added
them to the Python list. Through the label encoder, we encoded all tags into corresponding
numbers, which represented the same person. Next, all gray-scale images and encoded
labels were sent into the LBPH model for training. After the model was trained, we saved
the LBPH model as a yaml format file and saved the label encoder as a binary file through
serialization.

3.6. OpenFace Model Training

First, we divided the image list of the data set (all image paths) into a training set and
a test set, extracted the names of people from each image path as labels, and stored them in
the Python list. We then stored the image paths and tags of the training set and the test set
into the SQLite database.

We read the image of the training set and set the image size to a width of 600 pixels, and
the height was automatically adjusted with the width to maintain the aspect ratio. We used
opencv’s blobFromImage function to perform channel exchange, feature normalization, and
image size adjustment to 96 × 96 pixels. We sent the image to the OpenFace pre-trained
neural network nn4.small2.v1 model for inference and then output a 128-dimensional
feature vector.

We used numpy’s flatten function to flatten the 128-dimensional vector into a one-
dimensional array and added the array to the Python list. After we read the images of the
test set and skipped a flattened procedure, the images of the test set were processed in the
same way as the training set and finally stored in the Python list.

While the labels were encoded in the same way as in LBPH, the 128-dimensional
feature vector of the training set and the encoded labels were sent into the SVM classifier
for training. After training, the SVM classifier, the label encoder, the 128-dimensional
feature vector of the test set, and the names of the test set were individually stored as binary
files through serialization.

3.7. LBPH Prediction Image

We loaded the trained LBPH model and label encoder from the hard disk and retrieved
the image paths and tags of all test sets from the binary file. From the image path of each
test set, we extracted the person’s name, group name, and file name. We read all the images,
converted them into gray-scale images, and saved them into the Python list. In the label
part, the name of the person was label-encoded and converted into the corresponding
number. We sent all gray-scale images into the LBPH model for prediction. After the
prediction was completed, we saved the group name, file name, test label, prediction label,
and prediction distance into the Python list. We then used the Python dictionary to store
the list with the name of the person as the key and the data as the value, and we saved
the dictionary as a binary file through serialization. Through deserialization, the binary
dictionary file was read, and the person’s name, group name, file name, test label, predicted
label, and predicted distance in the list were extracted out from the dictionary by using
the name of the person as the key. We then compared the test tags with the predicted tags
one by one and recorded the identification results. At the end, the serial number, group
name, file name, test label, predicted label, predicted distance, and identification result
were stored in the SQLite database together.

3.8. OpenFace Prediction Image

We read the trained SVM classifier, label encoder, test set images, and labels from
memory through deserialization. We encoded the label through the label encoder and
converted it into a corresponding number. We used the SVM classifier to predict each test
set image and store the prediction results and probabilities. We pulled the image path of all
test sets from the SQLite database and extracted the file name and group name from it. We
compared the label of the test set with the predicted result and recorded the identification
result. Finally, the serial number, person name, group name, file name, coded test set label,
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predicted label, predicted probability, and identification result were stored in the SQLite
database.

3.9. Statistics and Visualization

We obtained the prediction results from the SQLite database of LBPH and OpenFace.
We counted the number of correct and incorrect predictions for each image of each group
and saved the number, person name, group name, file name, status, and quantity into the
SQLite database.

For the visualization part, we selected the A+120–120E+00 grouping, shown in Figure 8,
for more detailed statistics. This group consisted of 13 photos, where A+120–120 meant the
range was from +120◦ to −120◦ in azimuth and E+00 meant elevation was 0◦. The reason
for choosing this group was that the range of azimuth angles in this group was widely
distributed, and E+00 made illumination even in the longitudinal plane. With A+000 as the
center, the lighting effect was symmetrical on the face and was easier to observe, at which
the azimuth will cause the accuracy to rise or fall sharply.
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Figure 8. Grouped images of A+120–120E+00.

4. Experimental Results

Figure 9 is a stacking diagram of LBPH’s A+120–120E+00 grouping error rate compar-
ison of different ambient light levels. Figure 10 illustrates the stacking method of Figure 9.
The bottom of the stacked image is the azimuth +120◦, the center white block is the azimuth
+000◦, and the top is the azimuth −120◦. The recognition error rate is lower closer to
the center white block, and higher otherwise. Therefore, the recognition error rates of
the uppermost and the lowermost blocks are the highest, and the recognition error rate
decreases as the azimuth angle approaches +000◦.
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Figure 11 is a stacking diagram of OpenFace’s A+120–120E+00 grouping error rate
comparison of different ambient light levels. The recognition error rates of the upper-
most and the lowermost blocks are the highest, and they decrease as the azimuth angle
approaches +000◦. Overall, OpenFace’s recognition error rate was about 20% to 49% higher
than LBPH’s in A+120–120E+00 grouped images.

Accurate rate = ∑31
1 (( Number of correctly identified sheets ÷ 4)× 100%)÷ 31 (3)
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Figure 12 shows the average ambient lighting accuracy rates of 31 people grouped
by A+120–120E+00. Formula (3) is the calculation formula for the average recognition
accuracy rates of each azimuth angle in Figure 12.

First, we calculated the ratio of the number of correct predictions to the total number
of predictions and then converted the ratio into a percentage. Finally, we added up all the
percentages and divided by 31 people to get the average.

For the picture with A+000◦ as the center line, the recognition accuracy rate was
almost symmetrical. There was not much difference between the light source on the left
or the right. The closer the recognized azimuth angle was to azimuth +000◦, the higher
the recognition accuracy rate; the farther away the azimuth angle +000◦, the lower the
recognition accuracy rate. Overall, the recognition accuracy rate of LBPH under changes
in environmental lighting was far better than that of OpenFace. Therefore, LBPH is more
suitable for applications in environments with light changes. From Figure 12, whether
LBPH or OpenFace was used at the azimuth angle of −010◦, the recognition accuracy rate
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was the highest. LBPH was 34.68% more accurate than OpenFace at the azimuth angles of
−010◦. LBPH was 38.71% more accurate than OpenFace at the azimuth angles of +120◦.
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Error rate = ∑31
1 (( Number of sheets with identification errors ÷ 4)× 100%)÷ 31 (4)

Figure 13 shows the average ambient light error rate of 31 people grouped by
A+120–120E+00, and Formula (4) is the calculation formula for the average identifica-
tion error rate of each azimuth angle shown in Figure 13. First, we calculated the ratio of
the number of prediction errors to the total number of predictions and converted it into
a percentage. Finally, we added up all percentages and divided by 31 people to get the
average.
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With A+000◦ as the center line, the recognition error rate was almost symmetrical.
Overall, the recognition error rate of LBPH was much lower than that of OpenFace. When
both azimuth angles were in the range of +25◦ to −25◦, the recognition error rate was
relatively low. When both azimuth angles were in the range of +50◦ to +120◦ and −50◦ to
−120◦, the recognition error rate was relatively high. For LBPH, when the azimuth angle
was +50◦ to +25◦, the identification error rate was reduced by 26.62%; when the azimuth
angle was −50◦ to −25◦, the identification error rate was reduced by 17.74%. For OpenFace,
when the azimuth angle was +50◦ to +25◦, the recognition error rate dropped by 13.71%;
when the azimuth angle was -50◦ to −25◦, the recognition error rate dropped by 20.17%.
From the azimuth angle of +50◦ to +25◦ and −50◦ to −25◦, we found that the recognition
error rate was significantly reduced. This means that the change of the azimuth angle
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reduces the shadow on the face, and the contours of the facial features are clearer, reducing
the error rate of face recognition.

5. Discussion

The benefits and drawbacks of both LBPH and OpenFace were published in previous
studies [27]. In general, OpenFace has consistently higher accuracy than that of LBPH in
adding more samples, although increasing the number of samples makes overall accuracy
drop. OpenFace’s SVM has faster training time than that of LBPH, no matter how many
samples are included. In times of prediction per image, OpenFace increases slightly more
than LBPH does, but it does not increase further while increasing the sample numbers.
With sample sizes larger than 50, the prediction time per image of LBPH exceeds that of
OpenFace executed on a GPU.

The circumstances of images have great influence on the accuracy of these two meth-
ods [51]. Image noises affect LBPH more than OpenFace. Under various camera resolutions,
OpenFace shows more robustly than LBPH. However, in different lighting conditions,
LPBH operates better than OpenFace.

According to the least required amount of training data to achieve a good result,
OpenFace requires fewer than 20 images per person to achieve 95% accuracy, while LBPH
requires far more to achieve similar results. A main advantage of OpenFace is its design for
real-time identification and that it can be easily worked on mobile devices. One can use
very little data to train an OpenFace model to achieve high accuracy.

LBPH is superior to OpenFace in that it works better in unevenly lighting circum-
stances. LBPH is suitable in systems with inconsistent illumination, such as payment
systems. LBPH is less affected by different lighting because of its calculation of each pixel’s
binary number according to neighborhood, which can reduce interference of nearby illu-
mination. Throughout the procedure, LBPH can reflect the local characteristics of each
pixel.

The previous studies did not analyze in detail the impact of various lightings on
face recognition, nor did they conduct thorough research on the two methods at different
illumination angles. We confirmed that in terms of different lighting angles, LBPH is more
consistently accurate than OpenFace. LBPH has an accuracy of close to or more than 90%,
especially while the lighting angle is within + or - 25 degrees in the horizontal plane.

6. Conclusions and Future Work

From the results, LBPH is more suitable than OpenFace in recognition applications
with ambient lighting changes. When the light source is kept larger than the azimuth
angle of +25◦ or less than −25◦ and the elevation angle +000◦, the shadows on the face will
increase, and the recognition accuracy will be lower; if not, the result will be the reverse.
According to the results of face recognition with changes in ambient light, compared with
that of the OpenFace recognition model, LBPH has superior performance in classification
and recognition.

Therefore, for image recognition (such as face recognition) that requires more detailed
output for line texture features but is affected by ambient light, LBPH has a greater level of
recognition accuracy for its object recognition or classification results than that of OpenFace.
Furthermore, the previously made important image collection can be employed in the
subsequent data transfer process.

In addition, most facial images are captured in natural settings. As a result, the
contents of the picture can be very complicated, and the lightening state can be very diverse.
The other major problems of images from cameras are distortion, noise, and different
resolutions of lens systems. Applying the appropriate methods will improve the system
and make it more robust and efficient so that it can be implemented in realistic settings.

Since a trained LBPH algorithm is very robust to changes in ambient light, it can be
deployed on a Raspberry Pi or other edge computing processors to be implemented in



Electronics 2023, 12, 166 14 of 16

access control systems with ambient lighting changes or related fields of applications, such
as facial payment systems.
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