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Abstract

This paper proposes a new approach for power signal
disturbances (PSDs) classification using a two-dimension
(2D) deep convolutional neural network (CNN). The data
preprocessing stage introduces a conversion method from
signal to the 2D grayscale image. Firstly, the signal is
divided into multiple cycles. The zero-crossing rate is
adopted to specify a cycle’s start and endpoints. Then,
the cycles are transformed into matrices. Next, the ma-
trices are merged into a new form matrix. Lastly, the
matrix is converted into the 2D image grayscale. The ob-
tained 2D image preserves information and waveform the
sinusoidal of the signal. The experiment was carried out
on datasets containing 14 different disturbance categories
with the same model learning structure. The results show
that the 2D deep CNN performs better than the one-
dimension (1D) deep CNN. According to this result, the
2D deep CNN can improve the PSDs classification effec-
tiveness. Furthermore, the proposed method outperforms
the conversion method used in previous studies.

Keywords: 2D Deep CNN; Conversion; Image; Signal
Disturbance

1 Introduction

Power quality refers to interference-free electricity signals.
Various deviations caused from loads [11,18] are to be con-
sidered as power signal disturbances (PSDs). The emer-
gence of distortions in the power quality strongly affects
the decreasing performance or malfunction of electricity
equipment at industry, office, and home. In addition, the
disturbances can cause an economic loss because of the
reparation and replacement cost of the equipment dam-
age. Therefore, identifying and classifying the PSDs are
the best method in those worst impact avoiding. Scien-
tific research has been carried out to address this prob-
lem. The rapid advancement of the deep learning method

has been implemented in the PSDs field. Convolutional
neural network (CNN) has the most performance capa-
bility and is widely employed in the PSDs classification
work [18]. The one-dimensional (1D) CNN and the two-
dimensional (2D) CNN methods have been implemented
in the PSDs field. The 1D CNN is applied for the 1D
dataset, whereas the 2D CNN is fed by the 2D dataset.
Recently, the most popular CNN in the PSDs classifica-
tion task is the deep CNN method. This method has
higher performance in comparison with the others [21].

The 1D CNN in PSDs classification has been imple-
mented by many authors [1,5,15,17,20,21]. These works
have proposed new approaches to improve the classifica-
tion performance such as addressed the over fitting prob-
lem [21], improved feature extraction [1, 17], and intro-
duced a hybrid model [15]. The performance shortages
such computational time and model size are tried to be
solved by implementing data compression techniques in
the data preprocessing [5, 20]. However, these investiga-
tions consumed a lot of original information in the com-
pression process.

In the beginning, the CNN method was employed for
the 2D image classification purpose [16]. The 2D CNN
method can learn the diversity and complexity of im-
age features [12]. When the 2D CNN is implemented
for the PSDs classification task, the 2D dataset is re-
quired for this method. However, the power signal data
is one-dimensional and represented in sinusoidal wave-
forms. Therefore, a data preprocessing is required to
convert from the power signal to the 2D image. Vari-
ous conversion techniques were carried out by authors in
references [2–4, 9, 10, 13, 14, 22, 24, 25]. The author in [13]
employed a trajectory matrix to produce a lag-covariance
model as image of PSDs. In addition, the work in [4]
utilized quadratic means to generate the disturbance im-
age. The other studies in [2, 3, 22] adopted a space pha-
sor diagram (SPD) to transform the sag disturbance into
the image. Besides, the investigations in [9, 10, 25] uti-
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lized a matrix to transform the signal disturbance into
the 2D image. The sampling points of signal are rear-
ranged into a number rows and columns in the matrix,
then convert the matrix into the gray-scale image. The
works in [14, 24] adopted a scalogram and spectrogram
analysis to represent the signal in the image. However,
the transforming process has changed the original infor-
mation totally [2, 3, 22], thus several important features
are lost. The image size resulted in [14] is a large and the
training time costly. In addition, the performance com-
parison of the 1D CNN and the 2D CNN models for the
PSDs classification is unevaluated in the previous inves-
tigations.

In this study, a robust data preprocessing method is
developed to convert from the signal to the 2D gray-scale
image, where the image results can represent the sinu-
soidal waveform and preserve the original information.
The 2D image obtained is used as the 2D dataset in the
2D deep CNN for the PSDs classification purpose. More-
over, the performance comparison of the 1D and 2D deep
CNN models for PSDs classification is evaluated utiliz-
ing a confusion matrix method. In addition, to compare
the efficacy of proposed conversion approach, the conver-
sion methods [9, 10, 25] are implemented using same the
1D signal and same the 2D deep CNN architecture. The
rest of this paper is organized as follows. First, Section 2
presents the material of this work and methods utilized for
signal conversion and the PSDs classification. Section 3
shows the experimental result and discussion. Finally,
conclusion and future study are explained in Section 4.

2 Material and Methods

In this section, first, the mathematical formula for gen-
eration of PSDs data is explained. Furthermore, the
approach of conversion signal-to-image proposed is pre-
sented. Then, the deep CNN model structure is discussed.

2.1 Mathematical Formula of PSDs

With the limitation of the real PSDs data, this work em-
ployed the mathematical formulas [8, 20, 21] to generate
the synthetic PSDs. In these equations, the IEEE-1159
standard parameter variations [7] are adopted. As pre-
sented in Table 1, this work utilizes 14 categories of dis-
turbance signal.

The parameters value such as intensity (α), distortion
of the transient (β), distortion of the flicker (λ), time (t1
and t2) are generated randomly to obtain the variety of
each disturbance category. The fundamental frequency
(f) is adjusted at 60 Hz, whereas the sampling frequency
(fs) is 3200 Hz [17], the cycle numbers (Nc) is 11, the
sampling points (Ns) is 586, and the amplitude (A) is set
at 1. The synthetic signals produced for each category
are 11,000 samples so that the total samples are 154,000.

2.2 The Signal to Image Conversion Ap-
proach

In this approach, the signal is divided into multiple cycles,
where zero-crossing rate (ZCR) is utilized to determine
the start and endpoints of cycles. The cycles are trans-
formed into the matrices. The matrices are then merged
to form a new matrix. The matrix result is converted to
the 2D grayscale image. The advantage of this approach
is that the image resolution can be reduced. The main
steps of the proposed approach are depicted in Figure 1.

Figure 1: The steps of the conversion from the signal to
the 2D grayscale image

The detailed explanation of Figure 1 is presented as
follows:

Step 1. Determine the matrix dimension.
The square matrix (number of the rows (Nr) is equal
to the number of the columns (Ncol) is chosen. The
Ncol is determined using Equation (1),

Ncol = ceiling(
fs

f
) (1)

If fs and f values are 3200 and 60, respectively, so
that Ncol value is 54. Then, the matrix dimension is
to be 54× 54.

Step 2. Divide the signal into multiple cycles.
The signal is divided into 11 cycles, with the start
and endpoints of each cycle determined by the ZCR.
The rate at which the signal changes from negative
to zero to positive is adopted in this work. As shown
in Figure 2, the ZCR points obtained are marked in
the signal.

According to Figure 2, the number of ZCR points ob-
tained is 11, where the sampling points of the signal
as ZCR are 1, 54, 107, 161, 214, 267, 320, 374, 427,
480, and 534. Therefore, the start and endpoints of
each cycle can be obtained which presented in Ta-
ble 2.
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Table 1: Mathematical model and parameter of power signal disturbances

Figure 2: The zero-crossing rate points in the signal

Table 2: The start and endpoints of each cycle

Cycle Start point End point

1th 1 54
2nd 55 107
3rd 108 161
4th 162 214
5th 215 267
6th 268 320
7th 321 374
8th 375 427
9th 428 480
10th 481 534
11th 534 586

Step 3. Transform the cycles into matrices.
The cycle is transformed into a matrix of dimension
54× 54. The start and the endpoints of the cycle are
adopted as the columns of the matrix. In contrast,
the sampling value of each point is used to determine
the rows of the matrix. The sampling value of these
points is then entered into the matrix elements. The
following are the specifics:

1) Set the zero matrix:
Initially, the elements of matrix are set at 0.

2) Indicate the column numbers:
The start and endpoints of a cycle are indexed
as column numbers to the matrix of dimension
54× 54.

3) Arrange the sampling values into multiple
classes:
The sampling values of the signal are arranged
into different classes. The number of classes
should be the same as the number of rows, and
the width of the classes should be the same as
well. The width of the class interval (Int) is
calculated with Equation (2). In this case, the
row number refers to the class number.

Int =
Hs− Ls

Nr
(2)

In which Hs represents the highest sampling
value, whereas Ls represents lowest sampling
value from all the sampling values. Further-
more, the lower (LB) and upper (UB) bound-
aries are used to define the class interval lim-
its. The boundaries of each class are obtained
through steps which depicted in Figure 3. The
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order of classes is started from the highest sam-
pling value as the first class, while the lowest
sampling value is in the 54rd class.

Figure 3: Steps of boundary determination for each
classes

4) Specify the row numbers:
According to the classes resulted in Step 3.3,
the row number of each sampling point can be
obtained by comparing the sampling value to
all the classes. The stages to determine the row
number of each sampling point is presented in
Figure 4.

5) Insert the sampling values of a cycle as the ma-
trix elements:
The sampling values are inserted as the elements
of matrix according to the row and column num-
ber which obtained at Steps 3.2 and 3.4.

Steps 3.1, 3.2, 3.4, and 3.5 are repeated to transform
the rest cycles into the matrices.

Step 4. Merge the matrices to form a new matrix.
These matrices are combined by the add matrix func-
tion to form a new matrix with the same dimensions.

Step 5. Convert the matrix to the 2D grayscale image.
The elements of the matrix are converted to the
grayscale color (0-255) to create the grayscale image.
The image resolution result is 54× 54 pixels.

2.3 Deep CNN Structure

The 1D and 2D of deep CNN methods were employed
to classify the PSDs. The 1D convolution is utilized to
classify the 1D signal, whereas the 2D convolution layer
is implemented for the 2D image dataset. As depicted
in Figure 5, the deep CNN structure is composed of 6

Figure 4: The steps of row specifying for each sampling
point

convolution layers, 3 max pooling layers, a dropout layer,
and 2 dense of fully connected layers. The detail of these
compositions is presented in Table 3.

2.4 Model Evaluation

The confusion matrix is employed to measure the pa-
rameters such as accuracy, recall, precision, and f1-
score [6, 19, 23]. The four categories output of the con-
fusion matrix such as true positive (TP), false positive
(FP), true negative (TN), and false negative (FP) are
calculated to obtain these parameters values. The param-
eters are used to evaluate the classification performance
of the 1D and 2D deep CNN models.

accuracy =
TP + TN

TP + TN + FP + FN
(3)

recall =
TP

TP + FN
(4)

precision =
TP

TP + FP
(5)

f1− score =
(2× precision× recall)

(precision+ recall)
(6)

3 Results and Discussion

In this section, first, the results of our approach for the
signal to image conversion were presented. Then, the
datasets used in this work are described. Furthermore,
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Figure 5: The architecture of the deep CNN model

the models training and testing stages are explained. The
results of the training and testing are analyzed to evaluate
the model’s performance.

3.1 Implementation of the Signal to Im-
age Conversion

The 14 synthetic disturbance types were generated using
the mathematical model from Table 1. Then, the sig-
nal is converted to the 2D grayscale image utilizing our
conversion proposed. As shown in Table 4, the 2D im-
age obtained represents the sinusoidal waveform where
the cycles of a signal are located in the image. In ad-
dition, the original amplitude values can be preserved in
the image, although these values are converted into the
grayscale color.

3.2 Datasets

In this work, the 1D signal dataset was obtained from the
implementation result of the mathematical formula in Ta-
ble 1, whereas the 2D image dataset was acquired from
applying our approach for a conversion of the 1D signal
to 2D image. In addition, we also employed the exist-
ing conversion methods [9,10,25] to obtain two 2D image
datasets. Thus, three 2D image datasets are utilized in
this work which presented in Table 5.

The 2D grayscale image sizes of the X, Y, and Z
datasets are 54x54, 24 x 24, and 30 x 20, respectively.
The 2D image dataset resulted from the previous meth-
ods are used to evaluate our approach performance. For
the training and validation purpose, we used 9,900 sam-
ples per category, whereas about 500 samples of each type
are utilized in the testing phase. The total samples of each
dataset are 145,600. The details of dataset splitting for
training, validation, and testing are presented in Table 6.

3.3 Training Stage Results

The model structure in Table 3 is utilized for the train-
ing phase. The 1D deep CNN model was trained using
the 1D dataset, whereas the 2D deep CNN models were

fed using the X, Y, and Z datasets. In the models, an
Adam optimizer with a learning rate of 0.001 is adopted.
Whereas, a categorical cross-entropy is employed for the
loss function. In addition, the batch size is adjusted at
32. In the 2D deep CNN models, a rescaling layer is set
at the first layer in the structure. Furthermore, a Nvidia
Tesla T4 GPU accelerator 16 GB memory, and Intel Xeon
(R) Central Processing Unit (CPU) @ 2.20 GHz are the
training model environments.

In the beginning, the models were trained at 100
epochs. However, the accuracy and loss values of train-
ing and validation after the 50 epoch are shown unstable.
Therefore, the models were retrained at 50 epochs. In
addition, the dropout layer values of each model are ad-
justed to achieve the fitting accuracy and loss values be-
tween training and validation in the models. The dropout
values for the 1D deep CNN, the 2D deep CNN X, the 2D
deep CNN Y, and the 2D deep CNN Z are set at 0.55, 0.37,
0.45, and 0.55, respectively. Finally, the evaluation of the
performance model training of the 1D and 2D deep CNN
presents in Table 7. The fitting graph between the train-
ing and validation of models are displayed in Figure 6.

As presented in Table 7, generally, the performance of
the 1D deep CNN outperforms both in the accuracy of
training and validation than the 2D deep CNN models.
In addition, the validation accuracy values are a higher
than the training accuracy for all models. In the 2D deep
CNN, the accuracy value of the 2D deep CNN X model
exceeds the others. It indicates that the proposed ap-
proach performance in the conversion task is better than
the previous approaches.

3.4 Discussion

In the models evaluation stage, the 1D deep CNN was
tested using 7,000 samples of the 1D signal, whereas the
2D deep CNN models were examined with 7,000 samples
each which were obtained from our approach, the author’s
method in [9, 10], and in [25]. The results of each model
testing are presented in the confusion matrices which are
shown in Figure 7. From these confusion matrices, the
parameters value such the recall, the precision, and the
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Table 3: The detail of model architecture

Layer The 1D deep CNN The 2D deep CNN

Convolution 1 Conv1D (32,5), activation = rectified linier unit (ReLU) Conv2D (32,5) , activation=ReLU
Convolution 2 Conv1D (32,5) , activation=ReLU Conv2D (32,5) , activation=ReLU
Pooling 1 Maxpooling1D(2) Maxpooling2D(2)
Convolution 3 Conv1D (32,5) , activation=ReLU Conv2D (32,5) , activation=ReLU
Convolution 4 Conv1D (32,5) , activation=ReLU Conv2D (32,5) , activation=ReLU
Pooling 2 Maxpooling1D(2) Maxpooling2D(2)
Convolution 5 Conv1D (32,5) , activation=ReLU Conv2D (32,5) , activation=ReLU
Convolution 6 Conv1D (32,5) , activation=ReLU Conv2D (32,5) , activation=ReLU
Pooling 3 Maxpooling1D(2) Maxpooling2D(2)
Dense 1 Units = 128, activation=ReLU Units = 128, activation=ReLU
Dense 2 Units = 14, activation= softmax Units = 14, activation= softmax

Table 4: Representation of the 1D signal and the 2D image
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(a)

(b)

(c)

(d)

Figure 6: Fitting model of (a). the 1D deep CNN, (b).
the 2D deep CNN X, (c). the 2D deep CNN Y, (d). the
2D deep CNN Z

Table 5: The 2D dataset and model name

Conversion method Dataset Model
Our proposed approach X 2D deep CNN X
Author’s approach [9, 10] Y 2D deep CNN Y
Author’s approach [25] Z 2D deep CNN Z

Table 6: Splitting of the 1D and 2D dataset

1D signal 2D grayscale image

Training set 110,880 110,880
Validation set 27,720 27,720
Testing set 7,000 7,000

Table 7: Models performance in the training phase

Models Training Validation
Models accuracy (%) accuracy (%)

1D deep CNN 99.27 99.51
2D deep CNN X 99.10 99.23
2D deep CNN Y 98.68 98.91
2D deep CNN Z 97.97 98.33

f1- score are obtained.
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(a)

(b)

(c)

(d)

Figure 7: Confusion matrix of (a). the 1D deep CNN,
(b). the 2D deep CNN X model, (c). the 2D deep CNN
model, (d). the 2D deep CNN Z model

Firstly, we evaluated the testing performance of the 1D
deep CNN and the 2D deep CNN X models. The parame-
ters value of each disturbance are presented in Table 8 and
Figure 8. The experiment’s result showed that the flicker
category and its combination achieved 100% for all the
parameters value of both the models. These results are
also obtained by the authors in [5, 21]. As the confusion
matrices presented in Figure 7(a) and 8(b), the testing
resulted of the 1D deep CNN, the number of disturbances
in which the TP values reaching 100% are ten categories,
whereas the 2D deep CNN X obtains nine categories. On
the other hand, the lowest TP value of the 1D deep CNN is
the interruption harmonic at 97.2%, where the rest (FN)
is detected as the sag harmonic. Meanwhile, in the 2D
deep CNN X model, the sag category is the lowest with
98%, where the rest (FN) is identified as the interruption
disturbance. It can occur because the minimum bound-
ary value of the intensity (α) interruption is equal to the
maximum boundary of the sag disturbance.

Figure 8: Bar chart of the testing evaluation between the
1D and 2D deep CNN X

As presented in Table 9 and Figure 9, generally, the
value of the parameters of the 2D-X model exhibits better
performance than the 1D deep CNN. The 2D deep CNN
X model obtains 99.96% for the accuracy. The precision is
acquired at 99.73%. The recall and f1-score reach 99.72%
each. In addition, the size of the dataset and the model
file are small. However, the 2D deep CNN X model takes
relatively a cost computation time in training stage.

Furthermore, we verified the robustness of our ap-
proach in comparison to the previous approaches. An
evaluation of the classification performance of the models
using the 2D datasets from our approach and approaches
used in the previous research is given in Table 10 and
Figure 10. The experiment’s result demonstrated that
the 2D deep CNN Y model obtains 99.88% for accuracy,
99.19% for precision, 99.18% for recall, and 99.18% for
f1-score. The 2D deep CNN Z reaches 99.74% for accu-
racy, 98.80% for precision, 97.81 for recall, and 98.25 for
f1-score. It can be seen that our proposed approach out-
performs other methods with 99.96% for accuracy, 99.73%
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Table 8: Model performance of the 1D deep CNN (1D) and 2D deep CNN X (2D)

Disturbance categories Recall (%) Precision (%) f1-score (%)
1D 2D 1D 2D 1D 2D

Flicker 100 100 100 100 100 100
Flicker with harmonic 100 100 100 100 100 100
Flicker with sag 100 100 100 100 100 100
Flicker with swell 100 100 100 100 100 100
Harmonic 100 100 99.8 100 99.9 100
Interruption 100 99.8 99 98.03 99.5 98.9
Interruption harmonic 97.2 100 100 98.81 98.58 99.4
Normal 100 99.8 96.52 100 98.23 99.89
Notch 100 100 100 100 100 100
Sag 96.8 98 99.38 99.59 98.07 98.79
Sag with harmonic 100 98.8 97.27 100 98.61 99.39
Swell 100 99.8 100 100 100 99.89
Swell with harmonic 99.8 100 100 100 99.89 100
Transient 98 100 100 99.8 98.98 99.9

Table 9: Summary of the models performance between
the 1D and the 2D deep CNN

Parameters 1D deep CNN 2D deep CNN X

Accuracy (%) 99.91 99.96
Precision (%) 99.42 99.73
Recall (%) 99.41 99.72
F1-score (%) 99.41 99.72
Time training 16 30
per epoch (second)
Model size (MB) 1.24 0.80
File size (MB) 663 128

Figure 9: Bar chart of the testing evaluation between the
1D deep CNN and the 2D deep CNN X models

for precision, 99.72% for recall, and 99.72% for f1-score.
It indicates that the ability of the 2D deep CNN X model
which uses the dataset from our approach to identifying
all the relevant disturbances within the dataset is better
than the others. In addition, the capability of this model
to detect only the disturbances of interest in the dataset
is also higher than the previous methods. However, the
computation time of our approach is still high with 30 sec-
onds per epoch compared with the other methods. The
reason is that the 2D image size resulting from our ap-
proach is a large than the previous approaches.

Figure 10: Bar chart of the testing evaluation between
our approach and the existing methods

The results of the experiments indicate that the 2D
deep CNN model using the 2D image dataset obtained
from our approach increases the effectiveness of classifi-
cation. The signal to image conversion using our approach
boosts the 2D deep CNN performance in the PSDs classi-
fication, although the computation time is high in a train-
ing phase.
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Table 10: The testing evaluation between our approach and the existing methods

Parameters Model with the dataset using the conversion method of
Kasaru et al. [9, 10] Zhicong et al. [25] Proposed approach

Accuracy (%) 99.88 99.74 99.96
Precision (%) 99.19 98.80 99.73
Recall (%) 99.18 97.81 99.72
F1-score (%) 99.18 98.25 99.72
Time training per epoch (second) 15 16 30

4 Conclusions

A robust signal to the 2D image conversion and analy-
sis of the PSDs classification based on the 2D deep CNN
is presented in this study. In data preprocessing phase,
the signal is converted to the 2D grayscale image. The
2D grayscale image preserves the information and sinu-
soidal waveform of the signal. The conversion results are
then utilized as the 2D dataset in the training and test-
ing phase of the model. The experiment’s result shows
that the accuracy, the recall, and the precision values of
the model are 99.96%, 99.72%, and 99.73%, respectively.
These result demonstrates that our proposed approach
can improve the efficacy of the PSDs classification. In
addition, the performance of the proposed approach is
better compared to the 1D deep CNN and the previous
existing approaches. For a future study, the dataset with
noise will be implemented to the 1D and 2D deep CNN
model.
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